Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fu Qiang Huang, ${ }^{\text {a }}$ Jiyong Yao ${ }^{\text {b }}$

 and James A. Ibers ${ }^{\text {b }}$ *${ }^{\text {a }}$ Shanghai Institute of Ceramics, 1295 Dingxi Road, Shanghai 200050, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail:
ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{V}-\mathrm{S})=0.001 \AA$
R factor $=0.024$
$w R$ factor $=0.065$
Data-to-parameter ratio $=25.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Tetrapotassium barium bis[tetrathiovanadate(V)], $\mathrm{K}_{\mathbf{4}} \mathrm{Ba}\left[\mathrm{VS}_{4}\right]_{\mathbf{2}}$

The title compound, $\mathrm{K}_{4} \mathrm{Ba}\left[\mathrm{VS}_{4}\right]_{2}$, has been synthesized by the reaction of V and S in a $\mathrm{K}_{2} \mathrm{~S} / \mathrm{BaS}$ flux at 723 K . Its crystal structure is of the $\mathrm{K}_{4} \mathrm{Eu}\left[\mathrm{PS}_{4}\right]_{2}$ structure type and comprises isolated tetrahedral $\left[\mathrm{VS}_{4}\right]^{3-}$ anions separated by K^{+}and Ba^{2+} cations. The site symmetries of the atoms Ba, K1, K2, V, S1, S2, and S3 are 222, .2., ..m, ..m, ..m, 1, and ..m, respectively.

Comment

The structures of a number of salts that contain the isolated $\left[\mathrm{VS}_{4}\right]^{3-}$ anion are known (Table 2). Here we report the structure of the mixed-cation compound $\mathrm{K}_{4} \mathrm{Ba}\left[\mathrm{VS}_{4}\right]_{2}$. This compound crystallizes in space group Ibam and is of the $\mathrm{K}_{4} \mathrm{Eu}\left[\mathrm{PS}_{4}\right]_{2}$ structure type (Evenson \& Dorhout, 2001).

Fig. 1 shows the asymmetric unit and Fig. 2 shows the unitcell contents of $\mathrm{K}_{4} \mathrm{Ba}\left[\mathrm{VS}_{4}\right]_{2}$. The crystal structure is composed of isolated tetrahedral $\left[\mathrm{VS}_{4}\right]^{3-}$ anions and discrete K^{+}and Ba^{2+} cations. Each K and Ba cation is coordinated by eight S atoms in a distorted cube. The $\mathrm{K}-\mathrm{S}$ and $\mathrm{Ba}-\mathrm{S}$ distances (Table 1) are comparable to those of 3.130 (3) -3.771 (3) \AA in $\mathrm{K}_{3}\left[\mathrm{VS}_{4}\right]$ (Dürichen \& Bensch, 1996) and 3.144 (1)-3.403 (1) \AA in $\mathrm{NaBa}\left[\mathrm{VS}_{4}\right]$ (Figueroa et al., 2000), respectively. The geometries of the $\left[\mathrm{VS}_{4}\right]^{3-}$ anion in the present and other known structures are compared in Table 2. In these relatively simple structures, the anion maintains its essentially tetrahedral geometry.

Experimental

Crystals of $\mathrm{K}_{4} \mathrm{Ba}\left[\mathrm{VS}_{4}\right]_{2}$ were obtained as black needles from a solidstate reaction of 1.0 mmol V (Alfa, 99.9%), 4.0 mmol S (Aldrich, 99.9%), $1.5 \mathrm{mmol} \mathrm{K}_{2} \mathrm{~S}$ (Aldrich, 99%), and 0.5 mmol BaS (Aldrich, 99.9%). The mixture was loaded under Ar, sealed under 10^{-4} Torr (1 Torr $=133.322 \mathrm{~Pa}$) in a fused-silica tube, heated in a furnace to

Figure 1

The asymmetric unit of $\mathrm{K}_{4} \mathrm{Ba}\left[\mathrm{VS}_{4}\right]_{2}$, showing 99% probability displacement ellipsoids.

Received 4 October 2006
Accepted 6 October 2006

Figure 2
The unit-cell contents of $\mathrm{K}_{4} \mathrm{Ba}\left[\mathrm{VS}_{4}\right]_{2}$.
723 K at $1 \mathrm{~K} \mathrm{~min}^{-1}$, kept at 723 K for 3 d , cooled at $0.05 \mathrm{~K} \mathrm{~min}^{-1}$ to 373 K , and then cooled to room temperature. The reaction mixture was washed with dimethylformamide, and then dried with acetone. It contained black needles and powder. The yield of these crystals was about 90%. Examination of selected needles with an EDX-equipped Hitachi S-3500 SEM led to results consistent with the stated composition.

Crystal data

$\mathrm{BaK}_{4} \mathrm{~S}_{8} \mathrm{~V}_{2}$	$Z=4$
$M_{r}=652.10$	$D_{x}=2.664 \mathrm{Mg} \mathrm{m}^{-3}$
Orthorhombic, Ibam	Mo $K \alpha$ radiation
$a=8.9553(4) \AA \AA$a $b=18.3506(9) \AA$	$\mu=5.54 \mathrm{~mm}^{-1}$
$c=9.8947(5) \AA$	$T=153(2) \mathrm{K}$
$V=1626.05(14) \AA^{3}$	Needle, black
	$0.306 \times 0.042 \times 0.038 \mathrm{~mm}$

Data collection

Bruker SMART-1000 CCD
diffractometer
ω scans
Absorption correction: numerical
(SHELXTL; Sheldrick, 2003)
$T_{\text {min }}=0.307, T_{\text {max }}=0.820$

9545 measured reflections 1083 independent reflections 1022 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=28.8^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.03 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.009 \\
& \Delta \rho_{\max }=3.41 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.66 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$
$w R\left(F^{2}\right)=0.065$
$S=1.66$
1083 reflections
42 parameters

Table 2
Ranges of $\mathrm{V}-\mathrm{S}$ distances (A) and $\mathrm{S}-\mathrm{V}-\mathrm{S}$ angles (${ }^{\circ}$) in inorganic structures containing the $\left[\mathrm{VS}_{4}\right]^{3-}$ anion.

$\mathrm{Compound}^{2}$	$\mathrm{~V}-\mathrm{S}$	$\mathrm{S}-\mathrm{V}-\mathrm{S}$	V Sym
$\mathrm{Cu}_{3}\left[\mathrm{VS}_{4}\right]^{b}$	2.219^{c}	109.47	$\overline{4} 3 m$
$\mathrm{~K}_{4} \mathrm{Ba}\left[\mathrm{VS}_{4}\right]_{2}{ }^{d}$	$2.137(1)-2.162(1)$	$108.45(2)-110.49(2)$	222
$\mathrm{Cs}_{2} \mathrm{Ag}\left[\mathrm{VS}_{4}\right]^{e}$	$2.176(2)$	$106.98(7)-113.59(6)$	222
$\mathrm{~K}_{2} \mathrm{Ag}\left[\mathrm{VS}_{4}\right]^{f}$	$2.178(1)$	$106.2(1)-114.4(1)$	222
$\mathrm{Rb} \mathrm{Ag}_{2}\left[\mathrm{VS}_{4}\right]^{f}$	$2.177(1)$	$106.5(1)-114.1(1)$	222
$\left.\mathrm{~K}_{2} \mathrm{Cu}^{f} \mathrm{VS}_{4}\right]^{g}$	$2.177(1)$	$108.6(1)-110.1(1)$	222
$\mathrm{Rb}_{2} \mathrm{Cu}^{2}\left[\mathrm{VS}_{4}\right]^{h}$	$2.1739(7)$	$109.03(4)-109.78(4)$	222
$\mathrm{KCu}_{2}\left[\mathrm{VS}_{4}\right]^{i}$	$2.146-2.233^{c}$	$109.19-109.93$	m
$\mathrm{KCu}_{2}\left[\mathrm{VS}_{4}\right]^{j}$	$2.147-2.229^{c}$	$109.07-109.87$	m
$\mathrm{RbCu}_{2}\left[\mathrm{VS}_{4}\right]^{k}$	$2.153(7)-2.232(5)$	$109.05(12)-109.9(3)$	m
$\mathrm{~K}_{3}\left[\mathrm{VS}_{4}\right]^{g}$	$2.147(2)-2.163(3)$	$108.8(1)-111.8(1)$	m
$\mathrm{Rb}_{3}\left[\mathrm{VS}_{4}\right]^{l}$	$2.148(2)-2.166(2)$	$108.69(5)-111.76(7)$	m
$\mathrm{Cs}_{3}\left[\mathrm{VS}_{4}\right]^{l}$	$2.141(1)-2.170(1)$	$108.54(4)-111.86(6)$	m
$\left.\mathrm{NaBa}^{l} \mathrm{VS}_{4}\right]^{m}$	$2.127(1)-2.166(2)$	$107.31(6)-111.23(6)$	1
$\mathrm{Na}_{3}\left[\mathrm{VS}_{4}\right]^{4}$	$2.134(1)-2.163(1)$	$108.8(0)-110.8(1)$	1

Notes: (a) site symmetry of V; (b) Mujica et al., 1998; (c) s.u. not given; (d) this work; (e) Tillinski et al., 1998; (f) Bensch \& Dürichen, 1996; (g) Dürichen \& Bensch, 1996; (h) Rumpf et al., 1997; (i) Peters et al., 1996; (j) Bensch et al., 1996; (k) Tillinski et al., 2001; (l) Emirdag-Eanes \& Ibers, 2001; (m) Figueroa et al., 2000; (n) Klepp \& Gabl, 1997.

The structure was standardized by means of the program STRUCTURE TIDY (Gelato \& Parthé, 1987). The highest residual electron density peak is at the Ba site.

Data collection: SMART (Bruker, 2003); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported in part by the US National Science Foundation under Grant DMR00-96676. FQH also acknowledges support from the Science and Technology Commission of Shanghai Municipality (Grant No. 05JC14080). Use was made of the MRL Central Facilities supported by the US National Science Foundation at the Materials Research Center of Northwestern University under Grant DMR00-76097.

References

Bensch, W. \& Dürichen, P. (1996). Chem. Ber. 129, 1207-1210.
Bensch, W., Dürichen, P. \& Weidlich, C. (1996). Z. Kristallogr. 211, 933.
Bruker (2003). SMART (Version 5.054) and SAINT-Plus (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
Dürichen, P. \& Bensch, W. (1996). Eur. J. Solid State Inorg. Chem. 33, 309-320.
Emirdag-Eanes, M. \& Ibers, J. A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 489-490.
Evenson, C. R. IV \& Dorhout, P. K. (2001). Inorg. Chem. 40, 2884-2891.
Figueroa, E., Leman, J. T., Evans, W. J., Ziller, J. W., Lawrence, J. M. \& Thompson, J. D. (2000). J. Phys. Chem. Solids, 61, 773-778
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Klepp, K. O. \& Gabl, G. (1997). Eur. J. Solid State Inorg. Chem. 34, 1143-1154.
Mujica, C., Carvajal, G., Llanos, J. \& Wittke, O. (1998). Z. Kristallogr. New Cryst. Struct. 213, 12.
Peters, K., Peters, E.-M., von Schnering, H. G., Mujica, C., Carvajal, G. \& Llanos, J. (1996). Z. Kristallogr. 211, 812.
Rumpf, C., Tillinski, R., Näther, C., Dürichen, P., Jess, I. \& Bensch, W. (1997). Eur. J. Solid State Inorg. Chem. 34, 1187-1198.
Sheldrick, G. M. (2003). SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Tillinski, R., Näther, C. \& Bensch, W. (2001). Acta Cryst. C57, 333-334.
Tillinski, R., Rumpf, C., Näther, C., Dürichen, P., Jess, I., Schunk, S. A. \& Bensch, W. (1998). Z. Anorg. Allg. Chem. 624, 1285-1290.

